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From the analyticity properties of the equation governing infinitesimal pertur- 
bations, it is conjectured that all types of Lyapunov exponents introduced in 
spatially extended 1D systems can be derived from a single function that we call 
the entropy potential. The general consequences of its very existence on the 
Kolmogorov-Sinai entropy of generic spatiotemporal patterns are discussed. 

KEY WORDS:  Spatiotemporal chaos; coupled map lattices; entropy poten- 
tial; comoving Lyapunov exponents. 

1. I N T R O D U C T I O N  

The first part of this work (1) (hereafter referred to as LPT) was devoted to 
the definition and discussion of the properties of temporal (TLS) and spa- 
tial (SLS) Lyapunov spectra of 1D extended dynamical systems. In this 
second part we first show how the two approaches are deeply related by 
proving, in some simple cases, and conjecturing, in general, that all 
stability properties can be derived from a single observable: the entropy 
potential, which is a function of two independent variables, the spatial and 
the temporal growth rates/z, 2, respectively. Legendre transforms represent 
the right tool to achieve a complete description of linear stability properties 
in the space-time plane. In fact, we find that equivalent descriptions can 
be obtained by choosing any pair of independent variables in the set 
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{n,, n~, p, 2}, where n, and na are the integrated densities of spatial, resp. 
temporal, Lyapunov exponents. The corresponding potentials are con- 
nected via suitable Legendre transformations involving pairs of conjugated 
variables. 

In the perspective of a complete characterization of space-time chaos, 
one could also consider the possibility of viewing a generic pattern as being 
generated along directions other than time and space axes. In fact, once a 
pattern is given, any direction can, a priori, be considered as an appro- 
priate "time" axis. Accordingly, questions can be addressed about the 
statistical properties of the pattern when viewed in that way. The oppor- 
tunity to consider generic orientations of the space-time coordinates does 
not follow simply from an abstract need of completeness; it also represents 
a first attempt to extend the analysis of chaotic data from time-series to 
patterns. In such a context, the mere existence of the entropy potential 
implies that the Kolmogorov-Sinai entropy-density is independent of the 
orientation. This provides a more sound basis to the conjecture that the 
entropy density is indeed an intrinsic property of a given pattern. (2) 

For the sake of completeness, finally, we recall the last class of 
exponents introduced to describe convectively unstable states, comoving 
Lyapunov exponents, ~3) and their relationship again with SLS and TLS. In 
particular, we discuss the structure of the spectra in a simple case of a 
stationary random state. 

Let us now briefly introduce the notations with reference to some 
specific models. Spatiotemporal chaos and instabilities in extended systems 
have been widely studied with the aid of models of reaction-diffusion pro- 
cesses, whose general 1D form is of the type ~4'5) 

O,y = F(y) + Dc3~y (1) 

with te state variable y(x, t) defined on the domain [0, L] (periodic bound- 
ary conditions y(0, t )=  y(L, t) are generally assumed). The nonlinear func- 
tion F accounts for the local reaction dynamics, while the diffusion matrix 
D represents the strength of the spatial coupling. The introduction of 
coupled map lattices (CML) has been of great help for understanding the 
statistical properties of spatio-temporal chaos, especially by means of 
numerical simulations. 

In its standard forlTl (6'7) a CML dynamics reads as 

i = f ( ( l _ e ) Y i + 2 [ Y i - l + y i + l ] )  (2) Yn+l 

where i, n being the space, resp. time, indices labelling each variable yi n of 
a lattice of length L (with periodic boundary conditions yin+L=yin), and 
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s gauges the diffusion strength. The function f, mapping a given interval I 
of the real axis onto itself, simulates a local nonlinear reaction process. 

A generalization of model (2) has been proposed ~3) to mimic 1D open- 
flow systems, namely 

i Y,+I = f ( ( 1  --e) y i ,+e[(1 --~)y~,-~ + ~yi+,] )  (3) 

The parameter 0c (bounded between 0 and 1) accounts for the possibility of 
an asymmetric coupling, corresponding to first order derivatives in the 
continuum limit. 

The present paper is organized as follows. In Section 2 we introduce 
the entropy potential and derive its explicit expression in some simple 
cases. Section 3 is devoted to a discussion of some general consequences of 
the existence of a potential on the Kolmogorov-Sinai entropy. Comoving 
exponents are reviewed in Section 4 within the framework introduced in 
this paper. Some conclusive remarks are finally reported in Section 5. 

2. ENTROPY POTENTIAL 

The simplest context, where a discussion on the entropy potential can 
be set in, is provided by the linear diffusion equation for the field u(x, t) 

a,u = 7u + DaZu (4) 

which can be interpreted as the linearization of (the scalar version of) 
Eq. (1) around a uniform stationary solution y(x,  t )=const .  The linear 
stability analysis amounts to assuming a perturbation of the form 

u(x, t) ~ exp(fix + ~t) (5) 

where ~ = ~ +/co and fi =/ t  + ik are complex numbers the real parts of 
which denote temporal and spatial Lyapunov exponents. Substituting 
Eq. (5) in Eq. (4) we obtain 

2 = 7 + D f i  2 (6) 

By separating real and imaginary parts, we get 

2(~o, k) = 7 + ( ~o2 - 4DZk4)/(4Dk2) 
(7) 

~(~o, k) = ~o/(2Dk) 

As already discussed in LPT, ~o and k play the same role as the integrated 
densities n,  and nx. This is a consequence of the fact that the Lyapunov 
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vectors are simply the Fourier modes, and the eigenvalues are naturally 
ordered by the corresponding wavenumbers. Such integrated densities can 
be explicitly obtained by inverting Eqs. (7), 

n =k= /lt 2 2-?D 
(8) 

n =_r  2 2 ~ ?  

The minus sign in the definition of n~ is just a matter of convention: we 
adopt this choice for consistency reasons with LPT. 

The above sets of Eqs. (7) and (8) stress, in a particular instance, the 
general observation reported in LPT that either the pair (G,, n~) or (/z, 2) 
suffices to identify a given perturbation, the remaining two variables being 
determined from the Lyapunov spectra. However, any two items in the set 
{p, 2, n~, n~} can be chosen to be the independent variables. The above 
two choices are preferable for symmetry reasons; however, the pairs (p, n;) 
and (2, nu) turn out to be the best ones for the identification of a single 
function, the entropy potential, which determines all stability properties. 

In fact, as it is clear from Eq. (6), we can condense the two real func- 
tions needed for a complete characterization of the stability properties into 
a single analytic complex expression. Now, the mere circumstance that 
2(p, n~) and n.(p, n~) are the real and imaginary parts of the analytic 
function 2*(p) has an immediate and important consequenceS: Cauchy- 
Riemann conditions are satisfied and it is possible to write 2 and n. as 
partial derivatives of the same real function, 

3 ~  
= 2  3n; 

(9) 
a~g 

where ~ is the imaginary part of the formal integral ~' of 2 with respect 
to p. Equivalently, one might call into play the real part of ~', as it is 
known that the latter contains the same amount of information. 

In the case under investigation, we find 

2 D 3 ~(p, na) =n~(? + Dp )---~n~ (10) 

5 The reference to the complex conjugate variable again follows from the convention adopted 
for n/t. 
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which, together with Eq. (9), provides a complete characterization of the 
system. 

Another, less trivial, example where the linearized problem leads to an 
analytic function for the eigenvalues is the 1D complex Ginzburg-Landau 
equation(a,5) 

0 , A = ( 1  + i c ~ ) 8 2 A + A - ( 1 - i c 3 ) A  IAI 2 (11) 

where A ( x ,  t) is a complex field and c 1 and c 3 are real positive parameters. 
The stability of the "phase winding" solutions A(  x, t) = Ao exp(  i( vx  - e) o t ) ), 
with A0 = x/1 - v 2 and o) 0 = -c3 + (cl + c3) v 2, are ruled by the following 
equation for the (complex) perturbation u(x ,  t) 

O t u = ( 1  + i c l ) ( 8 ~ u +  2 i O x u ) - ( 1  - ic3)(1 - v 2 ) ( u + u  *) (12) 

together with its complex conjugate for u* considered as an independent 
variable. The eigenvalue problem is solved assuming again 

u(x,  t) = Uo exp(/Tx + ~,t);  u*(x ,  t) = u* exp(/Tx + 2t) (13) 

and equating to zero the determinant of the resulting linear system, to get 
the analytic (implicit) relation between 2 and/7 

('2 + 1 - v 2 _/72 + 2c 1 v/7)2 + (Cl/72 .~_ 2v/7 -~- ( 1 -- V 2) C3) 2 = ( 1 + C2)(1 -- V2) 2 

(14) 

which is analogous to Eq. (6). 
On the basis of the examples discussed here and in the Appendix, one 

can convince himself that the analyticity of the eigenvalue equation appears 
to be very general. Periodicity in time simply leads to multiply several 
r.h.s.'s all depending on fi, while periodicity in space requires distinguishing 
between different sites on the lattice. In the latter case, the equivalent of 
Eq. (A7) is obtained by equating to zero a suitable determinant, where the 
only variable is/7. There is no reason to expect that different conditions 
should hold in aperiodic regimes. 

The above approach is, in some sense, a generalization of dispersion 
relations which are normally introduced for the characterization of elliptic 
equations. In that case, the only acceptable linear solutions are propagating 
plane waves, that is 2 = / ~ = 0  for (almost) all wavenumbers. From our 
point of view, this implies a strong simplification since the mutual relation- 
ships among {n~, n, ,  2,/~} reduce to the link between spatial and temporal 
wavenumbers. Moreover, it is obvious that, because of the degeneracy, not 
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all representations are equivalent (in particular, the (p, 2) plane is totally 
useless). 

We must stress that the methodology that we are trying to develop in 
these two papers applies to general systems where propagation coexists 
with amplification (or damping). This is by no means a limitation, as all 
models introduced for the characterization of space-time chaos are in this 
class. 

However, the most serious obstacle to a rigorous proof of the general 
validity of Eq. (9) is represented by the identification of the integrated den- 
sities n~, n~ with the wavenumbers co and k, respectively. In the presence of 
spatial disorder, the Lyapunov vectors are no longer Fourier modes: one 
can at most determine an average wavenumber by counting the number of 
nodes in the eigenfunctions. This is not a problem in the absence of 
temporal disorder, when the node theorem applies. (s) However, in more 
general cases, it is no longer possible to speak of eigenfunctions and we are 
not aware of any generalization to overcome the difficulty. For such a 
reason, we have performed some direct numerical check to verify the 
correctness of our conjectures. 

Before discussing numerical simulations, let us come back to the 
problem of the representation. In the above part, we have seen that the 
choice of the pair of independent variables (p, nx) was very fruitful for the 
identification of a potential. However, the asymmetry of such a choice calls 
for transferring the above result in either representation proposed in LPT. 
This step can be easily done with the help of Legendre transforms. We 
discuss the transformation to the plane (/~, 2), any other transformation 
being a straightforward generalization of the same procedure. 

From the first of Eq. (9), we see that 2 and n~ can, indeed, be con- 
sidered as conjugate variables in a Legendre transform involving ~. The 
conjugate potential is naturally 

~2n~ - ~  (15) 

It is easily seen that in the new representation, the following relations hold 

~2~=n2 

~ =n~ 
(16) 

Accordingly, the potential 4~ is the appropriate function which allows 
determining the two integrated densities in the symmetric representation 
(2,/~). We call �9 the entropy potential since it coincides with the 
Kolmogorov-Sinai entropy density along a suitable line (see Section 3). 
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Fig. 1. Contour plot of the entropy potential ~ for a homogeneous chain (r = 2, e = 1/3). 

In Fig. 1, we present a numerical reconstruction of ~(H, 2) in terms of 
its contour levels for the homogeneous, CML, namely model (2) with 

f ( x )  = r x  (rood 1 ). This is one of the models discussed in the Appendix for 
which it can be proved that the entropy potential does exist and, even 
more, an integral expression for q~ is available. However, because of the 
lack of an explicit solution, we have found more convenient to determine 
qs(kt, 2) by integrating (n~, n~) (see Eqs. (19) and (20) in LPT) first along 
the horizontal path H = 0 (from the origin to the prescribed 2-value) and 
then vertically to (kt, 2). The entropy potential is obviously known up to an 
additive arbitrary constant that we have fixed by imposing that the value 

Table I. Entropy Potential q) Computed by Integrating Along Two Different 
Paths in Two Different Points of the (p, A) Plane" 

Path Integral Path Integral 

(0, 0)---,(0, 3) 0.1011 (0, 3 )~(2 ,  3) -0.3883 -0.2872 
(0 ,0 )~(2 ,0 )  -0.5274 (2 ,0 )~ (2 ,3 )  0.2406 -0.2868 
(0, 0 )~ (0 ,  0.8) 0.1069 (0, 0.8)-,(3, 0.8) -0.8036 -0.6967 
(0 ,0 )~(3 ,0 )  --1.4972 (3 ,0)~(3 ,  0.8) 0.8 -0.6972 

"The difference is definitely smaller than the statistical error (~  10-3). 
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attained on the upper border is equal to zero. The potential increases 
monotonically from top to bottom. It is clear that outside the allowed 
region delimited by the solid curves, ~ is a linear function of/z and 2. 

The structure of the potential does not substantially change for more 
general CMLs. We have tested Eq. (16) for a lattice of logistic maps 
( f ix )  = 4 x ( 1 -  x)) with e = 1/3 by integrating along two different paths in 
the (/z, 2) plane (see Table I). The difference is so small that we can confirm 
that the relations are valid, within the numerical error. 

3. KOLMOGOROV-S INAI  ENTROPY 

The present section is devoted to discuss the consequence of the exist- 
ence of the entropy potential on the Kolmogorov-Sinai entropy HKS which 
is a measure of the information-production rate during a chaotic evolution. 
An estimate of HKS is given by the Pesin formula (9) as the sum H~ of the 
positive Lyapunov exponents. While it is rigorously proven that HKS <<. H~, 
numerical simulations indicate that, in general, an equality holds. 

In spatially extended systems, HKS is believed to be proportional to 
the system size. ~~ For this reason, it is convenient to introduce the 
entropy density h~ which, in the thermodynamic limit, is the integral of the 
positive part of the Lyapunov spectrum, 

~ -~max 

h~ = n~(/~ = O, 2) d2 (17) 
"~0 

where '~'max is the standard maximum Lyapunov exponent. 
One can naturally extend the above formula to the case of SLS, 

defining in a similar way the spatial entropy density h, .  It is important to 
notice that both quantities have the same physical dimensions, as they are 
measured in [bits/It]. Numerical simulations performed with different 
CML models indicate that h~ < h~. This can be explained by the following 
argument. The patterns obtained asymptotically by iterating the model in 
the original reference frame are, in general, unstable if generated along 
the spatial direction/11) In other words, the spatiotemporal attractor is a 
(strange) repellor of the spatial dynamics. Accordingly, part of the local 
instability accounted for by the sum of positive spatial Lyapunov 
exponents is turned into a contribution to the escape rate from the 
repellor, (12~ and h~ must be larger than the entropy h~ of the original 
pattern. In continuous models this inequality is brought to the extreme 
case, as h.  is infinite. 

In the context of low-dimensional chaos, one is interested in under- 
standing whether a given irregular signal originates from a few nonlinearly 
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coupled degrees of freedom. In the context of space-time chaos, patterns 
are the object of investigation. At variance with time-series that can be 
analyzed either by moving forward or backward in time, in the case of 
patterns, the identification of the most appropriate spatial and  temporal 
directions is a new and unavoidable element of the game. To this aim, the 
chronotopic formalism can be extended to consider an arbitrary orienta- 
tion of the "temporal" axis, identified by the unit vector ~7= (sin 0, cos 0). 
This results in introducing a new class q(n,) of Lyapunov spectra. {2,131 In 
the same way as the TLS and the SLS are defined by moving along the 
coordinate axes in the (/t, 2) plane, one can show that the q-spectra 
correspond to moving along the line 5(' defined by 2 =r tan 0. (~3] 

Here, we limit ourselves to discuss some implications of the above 
ideas on the concept of entropy density for patterns. Actually, the very 
existence of the entropy potential q~ implies that the Lyapunov spectrum is 
given by 

n~(O, q) = zT. V~ (18) 

where V = (Ou, a~) is the gradient in the (/~, 2) plane, and the r.h.s, of the 
above formula is evaluated along the line LP. 

It is natural to extend the definition (17) of entropy as 

f t/max 
h, = n,~(O, q) dq (191 

~0 

where the integral is performed along the line 5r and qmax is the maximum 
value of q which is reached in the intersection point between 2~o and 9 .  In 
the limit 0 = 0, the above equation reduces to the previous definition of hx, 
while for 0 = n/2 it reduces to h,. 

Again, the existence of an entropy potential implies that 

{hx 10l < 0* 
h~(O) = h,, 101/> 0* (20) 

where 0* is the value for which the line Lf is tangent to 9.  This can be 
shown by first rewriting Eq. (19) as an integral in the plane (nF,, n j ,  

B 
h,j = Ia q(n~,, n j  dn, 1 (211 

where A =(0, n~(0, 0)), while B is equal to either (0, 0) if 10l <0",  or, 
otherwise, to ( -  1, 1). 
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If we further notice that the integrand in Eq. (21) is the gradient of the 
potential 

~ =  2n~ + p n , - ~  (22) 

it is mathematically obvious why Eq. (20) holds. 
The independency of hv of 0 has also a physical interpretation. The 

Kolmogorov-Sinai entropy density is, in fact, the amount of information 
needed to characterize a space-time pattern divided by the product of its 
temporal duration times the spatial extension, i.e., divided by the "area" 
of a space-time domain. Therefore, if the information flow through the 
boundaries of such domain is negligible, (~~ we expect it to be independent 
of the way the temporal axis is oriented in the plane. 

4. C O M O V I N G  E X P O N E N T S  

Another class of indicators, introduced to describe convective insta- 
bilities in open-flow systems, consists of the so-called comoving or velocity- 
dependent Lyapunov exponents. (3~ They quantify the growth rate of a 
localized disturbance in a reference frame moving with constant velocity 11. 
Given an initial perturbation u(x, 0) which is different from zero only 
within the spatial interval [ - L o / 2 ,  L0/2], numerical analyses indicate 

u(x, t) ~ exp(A(x / t )  t) (23) 

for t sufficiently large. Equation (23) defines the comoving Lyapunov expo- 
nent A as a function of V=  x/t.  The initial width Lo of the disturbance 
is not a relevant parameter, since a generic perturbation grows with the 
maximum rate. 6 

The definition of A can be extended to a whole spectrum of comoving 
exponents by looking not just at the local amplitude of the perturbation 
but also at its shape. (15) Since the physical meaning of the rest of the 
spectrum is still questionable, in the following we limit ourselves to discuss 
the maximum. 

As a matter of fact, the limit t ~ ~ (required by a meaningful defini- 
tion of an asymptotic rate) implies the infinite-size limit. Therefore, one 
must carefully keep under control the system size, when longer times are 
considered. This is perhaps the most severe limitation against an accurate 
direct measurement of A. 

6 In the particular case of a O-like initial profile, the definition of local Lyapunov exponent 
introduced in ref. 14 is recovered. 
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It can be easily shown that A(V) is connected with the maximal tem- 
poral Lyapunov exponent 2max(t )  by a Legendre-type transformation. ~t~ 
Equation(23) implies that the perturbation has a locally exponential 
profile with a rate 

dA(V) (24) 
P= dV 

in the point x = Vt. On the other hand, we know that such a profile evolves 
as  

u( Vt, t )~ e x p [ ( 2 m a x ( f l ) + l l V ) t ]  (25) 

By combining Eqs. (23) and (25), we obtain 

d2max(/~) 
A ( V )  = 2max(~) -[-// - -  (26)  a~ 

which, together with Eq. (24) can be interpreted as a Legendre transform 
from the pair (A, V) to the pair (2 . . . .  /~). The inverse transform reveals the 
further constraint 

d2max(/~) 
V (27) 

d~ 

Equation (26) states that A(V) is the growth rate of an exponentially 
localized perturbation with a given/t value as determined from the condi- 
tion Eq. (24). However, the perturbation itself propagates with yet another 
velocity, ~'(p)=2max(].l)/[~/. (16) As a matter of fact, ~'(p) and V correspond 
to phase and group velocities respectively for propagating waves in linear 
dispersive media. In particular, the "phase" velocity ~'(p) can be larger 
than the "light" velocity (which is equal to 1 in CML with nearest 
neighbour coupling), while V is bounded to be smaller. 

A simple geometrical interpretation of the above Legendre transfor- 
mations can be given with reference to the (/~, 2) plane. The comoving 
Lyapunov exponent A(V) is the intercept of the 2 axis with the straight line 
of slope V, tangent to the upper branch of 9 .  If the system is chaotic, such 
an intersection remains positive for V~< V,, where V, = rain(~'(~)) can be 
interpreted as the propagation velocity of initially localized disturbances (16); 
faster perturbations are exponentially damped. 

Whenever a Legendre transform comes into play, some attention must 
be payed to the concavity of the functions involved in the transformation. 
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Fig. 2. Maximum comoving Lyapunov exponent A(V) for a frozen random pattern obtained 
as Legendre transform versus V (for comparison see also Fig. 6 in LPT). The vertical line 
indicates the position of the critical velocity V~ (see the text for definition). 

In the present context, this is the case of frozen random patterns where 
the border of the allowed region exhibits a change of concavity at I/~1 = ~  
(see Fig. 6 of LPT).  This implies that for I~1 < / ~ ,  the maximal temporal 
exponent is constant and equal to 2max(/tl). The corresponding "phase 
transition" reflects itself in the onset of a linear dependence of the 
comoving Lyapunov exponent on the velocity for I vI smaller than some 
value V1, 

A ( V )  =/~max(fl 1) - - i l l  V (28) 

This is evident in Fig. 2, where the whole set of A values is reported. 

5. CONCLUSIONS 

In the present paper we have shown that all instability properties of 
1D chaotic systems can be derived from a suitable entropy potential 
expressed as a function of any pair of variables in the set {/t, 2, n~, n~}. The 
most appropriate representation depends on the problem under investiga- 
tion. For  instance, the properties of Kolmogorov-Sinai entropy are more 
naturally described with reference to (n, ,  n~). This is analogous to standard 
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thermodynamics, where several potentials (Gibbs, Helmholtz, etc.) are 
introduced to cope with different physical conditions. 

The very notion of entropy potential implies general relations among the 
classes of Lyapunov exponents introduced and discussed here and in LPT, 
namely spatial, temporal and comoving exponents. Another remarkable 
consequence of the existence of an entropy potential is the independency of 
h~ on the propagation direction in the space-time plane. Accordingly, the 
Kolmogorov-Sinai entropy density can be considered as a super-invariant 
dynamical indicator of a given pattern. 

A further remark concerns the space dimensionality. The existence of 
the entropy potential appear to stem from the analyticity of the complex 
dispersion relations which, in turn, is peculiar of 1D systems. 

Although our theoretical construction is mainly based on numerical 
simulations and rigorous proofs in extremely simple models, we suspect 
that the existence of the entropy potential follows from some fundamental 
principle. Anyhow, we hope that the results presented in this paper will 
stimulate further studies along these lines. 

APPENDIX A 

The crucial point in justifying the existence of the entropy potential 
is the analytic structure of the eigenvalue equation stemming from the 
linearized dynamics. To support the generality of this statement we con- 
sider in this Appendix two more examples, namely the linear stability 
analysis of homogeneous solutions both of the ID wave equation and of 
CML. 

The wave equation 

~ u  = -m2u + 82u (A1) 

is the conservative analogous of Eq. (4) (m is a real parameter) and can be 
treated in a similar way, obtaining 

~2 =/72 _ m 2 (A2) 

The above expression justifies per se the existence of the entropy potential. 
Incidentally, notice that the Hamiltonian nature of Eq. (A1) implies the 
degeneracy of the standard TLS in zero, since the uniform solution is an 
elliptic fixed point. The entropy potential is determined as the real or, 
equivalently, the imaginary part of the formal integral 

f l[ {t(/7)= 2df i=~ /72-m2cosh-1 (A3) 
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This can be verified in the limit of a "weak" instability m ~ 0, when 
Eq. (A3) approximately reads as 

,.~1 F ~2 2 ~ ' ( f i ) ~ [ p  - -m l o g ( ~ ) ]  (A4) 

By also expanding to the lowest order in m the expressions of 2 and o9 
determined by Eq. (A2), we obtain 

1 m 2 
2(p, k) ~ ,p, (1 2/.t 2~-kZ. ) 

(A5) 
l 

og(p,k),."~k(1 + 2/.t2 + k2 j 

It is straightforward to verify that 

Ok Re ~ = --~. Im ~ = co 
(A6) 

8~ Re ~ = ~ k  Im ~ = 2  

For homogeneous solutions of CML models, we obtain 

e z = r[ (1 - e) + e cosh fi] (A7) 

where r is the multiplier. Unfortunately, in this case it is not possible to 
write down an explicit expression for the integral ~ for generic parameter 
values. We limit ourselves to discuss the problem in the limit of a small 
coupling, i.e., e ~ 0. Expansion of (A7) to the first order in e, yields 

T(fi) ~ (log r - e) fi + e sinh fi (A8) 

and 

2(p, n~) ~ log r -- e( 1 - cos k cosh p)  

nu(p, n ~) ~ e sin k sinhp 
(A9) 

which should be compared with the corresponding expressions obtained by 
expanding to first order in e Eqs. (16) and (20) of LPT. Moreover, one can 
verify that the relations analogous to Eqs. (A6) hold also in the present 
example. 
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